Blind tests of RNA nearest-neighbor energy prediction.
نویسندگان
چکیده
The predictive modeling and design of biologically active RNA molecules requires understanding the energetic balance among their basic components. Rapid developments in computer simulation promise increasingly accurate recovery of RNA's nearest-neighbor (NN) free-energy parameters, but these methods have not been tested in predictive trials or on nonstandard nucleotides. Here, we present, to our knowledge, the first such tests through a RECCES-Rosetta (reweighting of energy-function collection with conformational ensemble sampling in Rosetta) framework that rigorously models conformational entropy, predicts previously unmeasured NN parameters, and estimates these values' systematic uncertainties. RECCES-Rosetta recovers the 10 NN parameters for Watson-Crick stacked base pairs and 32 single-nucleotide dangling-end parameters with unprecedented accuracies: rmsd of 0.28 kcal/mol and 0.41 kcal/mol, respectively. For set-aside test sets, RECCES-Rosetta gives rmsd values of 0.32 kcal/mol on eight stacked pairs involving G-U wobble pairs and 0.99 kcal/mol on seven stacked pairs involving nonstandard isocytidine-isoguanosine pairs. To more rigorously assess RECCES-Rosetta, we carried out four blind predictions for stacked pairs involving 2,6-diaminopurine-U pairs, which achieved 0.64 kcal/mol rmsd accuracy when tested by subsequent experiments. Overall, these results establish that computational methods can now blindly predict energetics of basic RNA motifs, including chemically modified variants, with consistently better than 1 kcal/mol accuracy. Systematic tests indicate that resolving the remaining discrepancies will require energy function improvements beyond simply reweighting component terms, and we propose further blind trials to test such efforts.
منابع مشابه
A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation
A complete set of nearest neighbor parameters to predict the enthalpy change of RNA secondary structure formation was derived. These parameters can be used with available free energy nearest neighbor parameters to extend the secondary structure prediction of RNA sequences to temperatures other than 37 degrees C. The parameters were tested by predicting the secondary structures of sequences with...
متن کاملA range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using comp...
متن کاملRNA Secondary Structure: A Complete Mathematical Analysis
Using a rigorous mathematical analysis, the prediction of RNA secondary structure as a function of free energy is obtained. The iterative method effectively allows a search over the entire configuration space of the RNA molecule not possible by earlier methods. The approach also allows for the direct inclusion of the nearest neighbor or stacking energies.
متن کاملA sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction
Nearest neighbor parameters for estimating the folding energy changes of RNA secondary structures are used in structure prediction and analysis. Despite their widespread application, a comprehensive analysis of the impact of each parameter on the precision of calculations had not been conducted. To identify the parameters with greatest impact, a sensitivity analysis was performed on the 291 par...
متن کاملDrought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 30 شماره
صفحات -
تاریخ انتشار 2016